Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Virology ; 566: 9-15, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826709

RESUMEN

Tape measure (TM) proteins are essential for the formation of long-tailed phages. TM protein assembly into tails requires the action of tail assembly chaperones (TACs). TACs (e.g. gpG and gpT of E. coli phage lambda) are usually produced in a short (TAC-N) and long form (TAC-NC) with the latter comprised of TAC-N with an additional C-terminal domain (TAC-C). TAC-NC is generally synthesized through a ribosomal frameshifting mechanism. TAC encoding genes have never been identified in the intensively studied Escherichia coli phage T4, or any related phages. Here, we have bioinformatically identified putative TAC encoding genes in diverse T4-like phage genomes. The frameshifting mechanism for producing TAC-NC appears to be conserved in several T4-like phage groups. However, the group including phage T4 itself likely employs a different strategy whereby TAC-N and TAC-NC are encoded by separate genes (26 and 51 in phage T4).


Asunto(s)
Bacteriófago T4/genética , Escherichia coli/virología , Genoma Viral , Chaperonas Moleculares/genética , Proteínas de la Cola de los Virus/química , Virión/genética , Secuencia de Aminoácidos , Bacterias/virología , Bacteriófago T4/metabolismo , Bacteriófago T4/ultraestructura , Biología Computacional/métodos , Secuencia Conservada , Sistema de Lectura Ribosómico , Chaperonas Moleculares/clasificación , Chaperonas Moleculares/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteínas de la Cola de los Virus/clasificación , Proteínas de la Cola de los Virus/genética , Proteínas de la Cola de los Virus/metabolismo , Virión/metabolismo , Virión/ultraestructura , Ensamble de Virus/genética
2.
Sci Rep ; 11(1): 19313, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588569

RESUMEN

Shigellosis, caused by Shigella bacterial spp., is one of the leading causes of diarrheal morbidity and mortality. An increasing prevalence of multidrug-resistant Shigella species has revived the importance of bacteriophages as an alternative therapy to antibiotics. In this study, a novel bacteriophage, Sfk20, has been isolated from water bodies of a diarrheal outbreak area in Kolkata (India) with lytic activity against many Shigella spp. Phage Sfk20 showed a latent period of 20 min and a large burst size of 123 pfu per infected cell in a one-step growth analysis. Phage-host interaction and lytic activity confirmed by phage attachment, intracellular phage development, and bacterial cell burst using ultrathin sectioning and TEM analysis. The genomic analysis revealed that the double-stranded DNA genome of Sfk20 contains 164,878 bp with 35.62% G + C content and 241 ORFs. Results suggested phage Sfk20 to include as a member of the T4 myoviridae bacteriophage group. Phage Sfk20 has shown anti-biofilm potential against Shigella species. The results of this study imply that Sfk20 has good possibilities to be used as a biocontrol agent.


Asunto(s)
Bacteriófago T4/aislamiento & purificación , Disentería Bacilar/prevención & control , Terapia de Fagos/métodos , Shigella/virología , Bacteriófago T4/genética , Bacteriófago T4/ultraestructura , Disentería Bacilar/microbiología , Humanos , India , Shigella/patogenicidad , Microbiología del Agua
3.
Ultramicroscopy ; 218: 113086, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32781400

RESUMEN

Phase plates (PPs) are beneficial devices to improve the phase contrast of life-science objects in cryo-transmission electron microscopy (TEM). The development of the hole-free (HF) PP, which consists of a thin carbon film, has led to impressive results due to its ease in fabrication, implementation and application. However, the phase shift of the HFPP can be controlled only indirectly. The electrostatic Zach PP uses a strongly localized and adjustable electrostatic potential to generate well-defined and variable phase shifts between scattered and unscattered electrons. However, artifacts in phase-contrast TEM images are induced by the presence of the PP rod in the diffraction plane. We present a detailed analysis and comparison of the contrast-enhancing capabilities of both PP types and their emerging artifacts. For this purpose, cryo-TEM images of a standard T4-bacteriophage test sample were acquired with both PP types. Simulated images reproduce the experimental images well and substantially contribute to the understanding of contrast formation. An electrostatic Zach PP was used in this work to acquire cryo-electron tomograms with enhanced contrast, which are of similar quality as tomograms obtained by HFPP TEM.


Asunto(s)
Bacteriófago T4/ultraestructura , Microscopía por Crioelectrón/instrumentación , Microscopía por Crioelectrón/métodos , Microscopía Electrónica de Transmisión/instrumentación , Microscopía Electrónica de Transmisión/métodos , Microscopía de Contraste de Fase/métodos , Artefactos , Simulación por Computador , Electrones , Técnicas de Preparación Histocitológica/métodos
4.
Virology ; 543: 7-12, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32056848

RESUMEN

An essential step in the morphogenesis of tailed bacteriophages is the joining of heads and tails to form infectious virions. Our understanding of the maturation of complete virus particles remains incomplete. Through an unknown mechanism, phage T4 gene product 4 (gp4) plays an essential role in the head-tail joining step of T4-like phages. Alignment of T4 gp4 homologs identified a type II restriction endonuclease motif. Purified gp4 from both T4 and a marine T4-like bacteriophage, YC, have non-specific nuclease activity in vitro. Mutation of a single conserved amino acid residue in the endonuclease fold of T4 and YC gp4 abrogates nuclease activity. When expressed in trans, the wild type T4 gp4, but neither the mutated T4 protein nor the YC homolog, rescues a T4 gene 4 amber mutant phage. Thus the nuclease activity appears essential for morphogenesis, potentially by cleaving packaged DNA to enable the joining of heads to tails.


Asunto(s)
Bacteriófago T4/enzimología , Proteínas de la Cápside/metabolismo , Cápside/enzimología , Endonucleasas/genética , Virión/enzimología , Ensamble de Virus/genética , Bacteriófago T4/genética , Bacteriófago T4/fisiología , Bacteriófago T4/ultraestructura , Cápside/metabolismo , Cápside/ultraestructura , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Codón sin Sentido , Endonucleasas/química , Endonucleasas/metabolismo , Espectrometría de Masas , Microscopía Electrónica de Transmisión , Morfogénesis , Virión/metabolismo , Virión/ultraestructura
5.
PLoS Pathog ; 15(12): e1008193, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31856258

RESUMEN

Tailed bacteriophages (phages) are one of the most abundant life forms on Earth. They encode highly efficient molecular machines to infect bacteria, but the initial interactions between a phage and a bacterium that then lead to irreversible virus attachment and infection are poorly understood. This information is critically needed to engineer machines with novel host specificities in order to combat antibiotic resistance, a major threat to global health today. The tailed phage T4 encodes a specialized device for this purpose, the long tail fiber (LTF), which allows the virus to move on the bacterial surface and find a suitable site for infection. Consequently, the infection efficiency of phage T4 is one of the highest, reaching the theoretical value of 1. Although the atomic structure of the tip of the LTF has been determined, its functional architecture and how interactions with two structurally very different Escherichia coli receptor molecules, lipopolysaccharide (LPS) and outer membrane protein C (OmpC), contribute to virus movement remained unknown. Here, by developing direct receptor binding assays, extensive mutational and biochemical analyses, and structural modeling, we discovered that the ball-shaped tip of the LTF, a trimer of gene product 37, consists of three sets of symmetrically alternating binding sites for LPS and/or OmpC. Our studies implicate reversible and dynamic interactions between these sites and the receptors. We speculate that the LTF might function as a "molecular pivot" allowing the virus to "walk" on the bacterium by adjusting the angle or position of interaction of the six LTFs attached to the six-fold symmetric baseplate.


Asunto(s)
Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Bacteriófago T4/ultraestructura , Escherichia coli/virología , Acoplamiento Viral , Animales , Ratones , Porinas/metabolismo , Receptores Virales/metabolismo
6.
Nucleic Acids Res ; 47(17): 9423-9432, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31392983

RESUMEN

Bacteriophage T4 middle promoters are activated through a process called σ appropriation, which requires the concerted effort of two T4-encoded transcription factors: AsiA and MotA. Despite extensive biochemical and genetic analyses, puzzle remains, in part, because of a lack of precise structural information for σ appropriation complex. Here, we report a single-particle cryo-electron microscopy (cryo-EM) structure of an intact σ appropriation complex, comprising AsiA, MotA, Escherichia coli RNA polymerase (RNAP), σ70 and a T4 middle promoter. As expected, AsiA binds to and remodels σ region 4 to prevent its contact with host promoters. Unexpectedly, AsiA undergoes a large conformational change, takes over the job of σ region 4 and provides an anchor point for the upstream double-stranded DNA. Because σ region 4 is conserved among bacteria, other transcription factors may use the same strategy to alter the landscape of transcription immediately. Together, the structure provides a foundation for understanding σ appropriation and transcription activation.


Asunto(s)
Proteínas de Unión al ADN/ultraestructura , ARN Polimerasas Dirigidas por ADN/ultraestructura , Factores de Transcripción/ultraestructura , Proteínas Virales/ultraestructura , Bacteriófago T4/química , Bacteriófago T4/genética , Bacteriófago T4/ultraestructura , ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Regiones Promotoras Genéticas/genética , Conformación Proteica , Factores de Transcripción/química , Factores de Transcripción/genética , Proteínas Virales/genética
7.
Virology ; 536: 39-48, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31400548

RESUMEN

A bacteriophage T4 DNA "synapsis model" proposes that the bacteriophage T4 terminase small subunit (TerS) apposes two pac site containing dsDNA homologs to gauge concatemer maturation adequate for packaging initiation. N-terminus, C-terminus, or both ends modified fusion Ter S proteins retain function. Replacements of the TerS gene in the T4 genome with fusion genes encoding larger (18-45 kDa) TerS-eGFP and TerS-mCherry fluorescent fusion proteins function without significant change in phenotype. Co-infection and co-expression by T4 phages encoding TerS-eGFP and TerS-mCherry shows in vivo FRET in infected bacteria comparable to that of the purified, denatured and then renatured, mixed fusion proteins in vitro. FRET of purified, denatured-renatured, mixed temperature sensitive and native TerS fusion proteins at low and high temperature in vitro shows that TerS ring-like oligomer formation is essential for function in vivo. Super-resolution STORM and PALM microscopy of intercalating dye YOYO-1 DNA and photoactivatable TerS-PAmCherry-C1 fusions support accumulation of TerS dimeric or multiple ring-like oligomer structures containing DNA and gp16-mCherry in vivo as well as in vitro to regulate pac site cutting.


Asunto(s)
Bacteriófago T4/genética , Emparejamiento Cromosómico , Empaquetamiento del ADN , ADN Viral/química , Endodesoxirribonucleasas/química , Genoma Viral , Bacteriófago T4/metabolismo , Bacteriófago T4/ultraestructura , Sitios de Unión , ADN Viral/genética , ADN Viral/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Escherichia coli/ultraestructura , Escherichia coli/virología , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ensamble de Virus , Proteína Fluorescente Roja
8.
Vet Microbiol ; 218: 45-51, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29685220

RESUMEN

Trueperella pyogenes is an opportunistic pathogen of many animal species. It causes economic losses worldwide, through mastitis, metritis and mainly endometritis in dairy cows. The ability of this bacterium to form biofilms is implicated in chronic infections through hampering immune system recognition and antibiotic penetration. Since it is difficult to eradicate T. pyogenes infections with antibiotics, phage therapy presents itself as a non-toxic, effective and economically viable alternative. The present study evaluated the use of the bacteriophage vB_EcoM-UFV13 (UFV13) in the prevention of T. pyogenes biofilm development. Based upon two different approaches (crystal violet and sessile cell counting) we observed that only a multiplicity of infection (MOI) of 10 showed a statistically significant reduction in biofilm formation. Although the exact mechanisms of biofilm disruption and cell-adhesion inhibition have not been determined, genome sequence analysis of the Escherichia phage UFV13 revealed a repertoire of virion-associated peptidoglycan hydrolases (VAPGHs). The present study presents new findings regarding the disruption of biofilm formation of a Gram-positive bacterium. Subsequent transcriptomic and proteomic research will help us to understand the exact interaction mechanisms between UFV13 and T. pyogenes.


Asunto(s)
Actinomycetaceae/virología , Infecciones por Actinomycetales/veterinaria , Bacteriófago T4/genética , Biopelículas/crecimiento & desarrollo , Mastitis/veterinaria , Actinomycetaceae/genética , Actinomycetaceae/aislamiento & purificación , Infecciones por Actinomycetales/microbiología , Animales , Bacteriófago T4/aislamiento & purificación , Bacteriófago T4/metabolismo , Bacteriófago T4/ultraestructura , Bovinos , Enfermedades de los Bovinos/microbiología , Escherichia coli/aislamiento & purificación , Escherichia coli/virología , Femenino , Mastitis/microbiología , Microscopía Electrónica , Proteómica , Factores de Virulencia
9.
Proc Natl Acad Sci U S A ; 114(39): E8184-E8193, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28893988

RESUMEN

The 3.3-Å cryo-EM structure of the 860-Å-diameter isometric mutant bacteriophage T4 capsid has been determined. WT T4 has a prolate capsid characterized by triangulation numbers (T numbers) Tend = 13 for end caps and Tmid = 20 for midsection. A mutation in the major capsid protein, gp23, produced T=13 icosahedral capsids. The capsid is stabilized by 660 copies of the outer capsid protein, Soc, which clamp adjacent gp23 hexamers. The occupancies of Soc molecules are proportional to the size of the angle between the planes of adjacent hexameric capsomers. The angle between adjacent hexameric capsomers is greatest around the fivefold vertices, where there is the largest deviation from a planar hexagonal array. Thus, the Soc molecules reinforce the structure where there is the greatest strain in the gp23 hexagonal lattice. Mutations that change the angles between adjacent capsomers affect the positions of the pentameric vertices, resulting in different triangulation numbers in bacteriophage T4. The analysis of the T4 mutant head assembly gives guidance to how other icosahedral viruses reproducibly assemble into capsids with a predetermined T number, although the influence of scaffolding proteins is also important.


Asunto(s)
Bacteriófago T4/ultraestructura , Proteínas de la Cápside/química , Cápside/metabolismo , Ensamble de Virus/fisiología , Bacteriófago T4/genética , Proteínas de la Cápside/genética , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X , Modelos Moleculares , Mutación/genética , Estructura Secundaria de Proteína , Virión/química
10.
Structure ; 25(9): 1436-1441.e2, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28757144

RESUMEN

The bacteriophage T4 contractile tail (containing a tube and sheath) was the first biological assembly reconstructed in three dimensions by electron microscopy at a resolution of ∼35 Å in 1968. A single-particle reconstruction of the T4 baseplate was able to generate a 4.1 Å resolution map for the first two rings of the tube using the overall baseplate for alignment. We have now reconstructed the T4 tail tube at a resolution of 3.4 Å, more than a 1,000-fold increase in information content for the tube from 1968. We have used legacy software (Spider) to show that we can do better than the typical 2/3 Nyquist frequency. A reasonable map can be generated with only 1.5 electrons/Å2 using the higher dose images for alignment, but increasing the dose results in a better map, consistent with other reports that electron dose does not represent the main limitation on resolution in cryo-electron microscopy.


Asunto(s)
Bacteriófago T4/ultraestructura , Microscopía por Crioelectrón/métodos , Bacteriófago T4/química , Modelos Moleculares , Conformación Molecular , Programas Informáticos
11.
Eur J Pharm Sci ; 107: 168-182, 2017 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-28711712

RESUMEN

This study is focused on the development and evaluation of transdermal delivery of E. coli-specific T4 bacteriophages both ex-vivo and in-vivo using microemulsion as delivery carrier in eradicating the infection caused by E. coli. Microemulsions were prepared by mixing selected oil, surfactants and aqueous phase containing bacteriophages. The formulations were subjected to physicochemical characterization, ex-vivo and in-vivo permeation, stability studies, histological and immunofluorescence examination. The colloidal system exhibits a uniform size distribution, of finite size (150-320nm). Transmission electron microscopy revealed the encapsulation of bacteriophage in the aqueous globule. Ex-vivo permeation across skin was successfully achieved as 6×106PFU/mL and 6.7×106PFU/mL of T4 permeated from ME 6% and 10%, respectively. ME 6% was found to be thermodynamically stable and in-vivo permeation resulted in 5.49×105PFU/mL of bacteriophages in the blood of the E. coli challenged rats, while 2.48×105PFU/mL was detected in germ free rats, at the end of the study. Infected rats that were treated with bacteriophage were survived while significant mortality was observed in others. Histological and IL-6 immunofluorescence examination of the tissues revealed the efficacy/safety of the therapy. The microemulsion-based transdermal delivery of bacteriophage could be a promising approach to treat the infections caused by antibiotic-resistant bacteria.


Asunto(s)
Bacteriófago T4 , Infecciones por Escherichia coli/tratamiento farmacológico , Escherichia coli/virología , Administración Cutánea , Animales , Bacteriófago T4/ultraestructura , Emulsiones , Femenino , Masculino , Microscopía Electrónica de Transmisión , Ratas Wistar , Absorción Cutánea
12.
Biophys J ; 113(1): 195-205, 2017 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-28700918

RESUMEN

Bacteriophage T4 infects the bacterial host (Escherichia coli) using an efficient genomic delivery machine that is driven by elastic energy stored in a contractile tail sheath. Although the atomic structure of T4 is largely known, the dynamics of its fascinating injection machinery is not understood. This article contributes, to our knowledge, the first predictions of the energetics and dynamics of the T4 injection machinery using a novel dynamic model. The model employs an atomistic (molecular dynamics) representation of a fraction of the sheath structure to generate a continuum model of the entire sheath that also couples to a model of the viral capsid and tail tube. The resulting model of the entire injection machine reveals estimates for the energetics, timescale, and pathway of the T4 injection process as well as the force available for cell rupture. It also reveals the large and highly nonlinear conformational changes of the sheath whose elastic energy drives the injection process.


Asunto(s)
Bacteriófago T4/metabolismo , Bacteriófago T4/ultraestructura , Simulación de Dinámica Molecular , Bacteriófago T4/química , Cápside/química , Cápside/metabolismo , Cápside/ultraestructura , Elasticidad , Escherichia coli/metabolismo , Escherichia coli/virología , Hidrodinámica , Cinética , Dinámicas no Lineales , Rotación , Acoplamiento Viral , Integración Viral/fisiología , Internalización del Virus
13.
J Nanobiotechnology ; 15(1): 32, 2017 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-28438164

RESUMEN

BACKGROUND: Bacteriophage survives in at least two extremes of ionic environments: bacterial host (high ionic-cytosol) and that of soil (low ionic-environmental water). The impact of ionic composition in the micro- and macro-environments has not so far been addressed in phage biology. RESULTS: Here, we discovered a novel mechanism of aggregation/disaggregation transitions by phage virions. When normal sodium levels in phage media (150 mM) were lowered to 10 mM, advanced imaging by scanning electron microscopy, atomic force microscopy and dynamic light scattering all revealed formation of viral packages, each containing 20-100 virions. When ionic strength was returned from low to high, the aggregated state of phage reversed to a dispersed state, and the change in ionic strength did not substantially affect infectivity of the phage. By providing the direct evidence, that lowering of the sodium ion below the threshold of 20 mM causes rapid aggregation of phage while returning Na+ concentration to the values above this threshold causes dispersion of phage, we identified a biophysical mechanism of phage aggregation. CONCLUSIONS: Our results implicate operation of group behavior in phage and suggest a new kind of quorum sensing among its virions that is mediated by ions. Loss of ionic strength may act as a trigger in an evolutionary mechanism to improve the survival of bacteriophage by stimulating aggregation of phage when outside a bacterial host. Reversal of phage aggregation is also a promising breakthrough in biotechnological applications, since we demonstrated here the ability to retain viable virion aggregates on standard micro-filters.


Asunto(s)
Bacteriófago T4/fisiología , Sodio/metabolismo , Bacteriófago T4/ultraestructura , Cationes Monovalentes/metabolismo , Concentración Osmolar , Percepción de Quorum
14.
PLoS One ; 12(3): e0173341, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28291834

RESUMEN

Increasing isolation of the extremely antibiotic resistant bacterium Stenotrophomonas maltophilia has caused alarm worldwide due to the limited treatment options available. A potential treatment option for fighting this bacterium is 'phage therapy', the clinical application of bacteriophages to selectively kill bacteria. Bacteriophage DLP6 (vB_SmoM-DLP6) was isolated from a soil sample using clinical isolate S. maltophilia strain D1571 as host. Host range analysis of phage DLP6 against 27 clinical S. maltophilia isolates shows successful infection and lysis in 13 of the 27 isolates tested. Transmission electron microscopy of DLP6 indicates that it is a member of the Myoviridae family. Complete genome sequencing and analysis of DLP6 reveals its richly recombined evolutionary history, featuring a core of both T4-like and cyanophage genes, which suggests that it is a member of the T4-superfamily. Unlike other T4-superfamily phages however, DLP6 features a transposase and ends with 229 bp direct terminal repeats. The isolation of this bacteriophage is an exciting discovery due to the divergent nature of DLP6 in relation to the T4-superfamily of phages.


Asunto(s)
Bacteriófago T4/aislamiento & purificación , Stenotrophomonas maltophilia/virología , Bacteriófago T4/genética , Bacteriófago T4/ultraestructura , Microscopía Electrónica de Transmisión , Filogenia , Regiones Promotoras Genéticas , Regiones Terminadoras Genéticas
16.
Proc Natl Acad Sci U S A ; 113(36): 10174-9, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27555589

RESUMEN

Contractile phage tails are powerful cell puncturing nanomachines that have been co-opted by bacteria for self-defense against both bacteria and eukaryotic cells. The tail of phage T4 has long served as the paradigm for understanding contractile tail-like systems despite its greater complexity compared with other contractile-tailed phages. Here, we present a detailed investigation of the assembly of a "simple" contractile-tailed phage baseplate, that of Escherichia coli phage Mu. By coexpressing various combinations of putative Mu baseplate proteins, we defined the required components of this baseplate and delineated its assembly pathway. We show that the Mu baseplate is constructed through the independent assembly of wedges that are organized around a central hub complex. The Mu wedges are comprised of only three protein subunits rather than the seven found in the equivalent structure in T4. Through extensive bioinformatic analyses, we found that homologs of the essential components of the Mu baseplate can be identified in the majority of contractile-tailed phages and prophages. No T4-like prophages were identified. The conserved simple baseplate components were also found in contractile tail-derived bacterial apparatuses, such as type VI secretion systems, Photorhabdus virulence cassettes, and R-type tailocins. Our work highlights the evolutionary connections and similarities in the biochemical behavior of phage Mu wedge components and the TssF and TssG proteins of the type VI secretion system. In addition, we demonstrate the importance of the Mu baseplate as a model system for understanding bacterial phage tail-derived systems.


Asunto(s)
Bacteriófago mu/genética , Sistemas de Secreción Tipo VI/genética , Proteínas de la Cola de los Virus/genética , Virión/genética , Ensamble de Virus/genética , Bacillus subtilis/virología , Bacteriófago P2/genética , Bacteriófago P2/metabolismo , Bacteriófago P2/ultraestructura , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Bacteriófago T4/ultraestructura , Bacteriófago mu/metabolismo , Bacteriófago mu/ultraestructura , Biología Computacional , Escherichia coli/virología , Expresión Génica , Sintenía , Sistemas de Secreción Tipo VI/metabolismo , Proteínas de la Cola de los Virus/metabolismo , Virión/metabolismo , Virión/ultraestructura
17.
Nature ; 533(7603): 346-52, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27193680

RESUMEN

Several systems, including contractile tail bacteriophages, the type VI secretion system and R-type pyocins, use a multiprotein tubular apparatus to attach to and penetrate host cell membranes. This macromolecular machine resembles a stretched, coiled spring (or sheath) wound around a rigid tube with a spike-shaped protein at its tip. A baseplate structure, which is arguably the most complex part of this assembly, relays the contraction signal to the sheath. Here we present the atomic structure of the approximately 6-megadalton bacteriophage T4 baseplate in its pre- and post-host attachment states and explain the events that lead to sheath contraction in atomic detail. We establish the identity and function of a minimal set of components that is conserved in all contractile injection systems and show that the triggering mechanism is universally conserved.


Asunto(s)
Bacteriófago T4/química , Bacteriófago T4/ultraestructura , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica
18.
Proc Natl Acad Sci U S A ; 113(10): 2654-9, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26929357

RESUMEN

Bacteriophage T4 consists of a head for protecting its genome and a sheathed tail for inserting its genome into a host. The tail terminates with a multiprotein baseplate that changes its conformation from a "high-energy" dome-shaped to a "low-energy" star-shaped structure during infection. Although these two structures represent different minima in the total energy landscape of the baseplate assembly, as the dome-shaped structure readily changes to the star-shaped structure when the virus infects a host bacterium, the dome-shaped structure must have more energy than the star-shaped structure. Here we describe the electron microscopy structure of a 3.3-MDa in vitro-assembled star-shaped baseplate with a resolution of 3.8 Å. This structure, together with other genetic and structural data, shows why the high-energy baseplate is formed in the presence of the central hub and how the baseplate changes to the low-energy structure, via two steps during infection. Thus, the presence of the central hub is required to initiate the assembly of metastable, high-energy structures. If the high-energy structure is formed and stabilized faster than the low-energy structure, there will be insufficient components to assemble the low-energy structure.


Asunto(s)
Bacteriófago T4/ultraestructura , Microscopía por Crioelectrón/métodos , Virión/ultraestructura , Ensamble de Virus , Bacterias/virología , Bacteriófago T4/química , Bacteriófago T4/fisiología , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Grabación de Cinta de Video , Proteínas Virales/química , Proteínas Virales/ultraestructura , Virión/química , Virión/fisiología
19.
Future Microbiol ; 9(12): 1319-27, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25517898

RESUMEN

Bacteriophage T4 is the most well-studied member of Myoviridae, the most complex family of tailed phages. T4 assembly is divided into three independent pathways: the head, the tail and the long tail fibers. The prolate head encapsidates a 172 kbp concatemeric dsDNA genome. The 925 Å-long tail is surrounded by the contractile sheath and ends with a hexagonal baseplate. Six long tail fibers are attached to the baseplate's periphery and are the host cell's recognition sensors. The sheath and the baseplate undergo large conformational changes during infection. X-ray crystallography and cryo-electron microscopy have provided structural information on protein-protein and protein-nucleic acid interactions that regulate conformational changes during assembly and infection of Escherichia coli cells.


Asunto(s)
Bacteriófago T4/fisiología , Bacteriófago T4/ultraestructura , Escherichia coli/virología , Bacteriófago T4/genética , Microscopía por Crioelectrón , Cristalografía por Rayos X , Genoma Viral , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Virales/química , Proteínas Virales/genética , Ensamble de Virus
20.
Virology ; 450-451: 205-12, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24503083

RESUMEN

ΦM12 is the first example of a T=19l geometry capsid, encapsulating the recently sequenced genome. Here, we present structures determined by cryo-EM of full and empty capsids. The structure reveals the pattern for assembly of 1140 HK97-like capsid proteins, pointing to interactions at the pseudo 3-fold symmetry axes that hold together the asymmetric unit. The particular smooth surface of the capsid, along with a lack of accessory coat proteins encoded by the genome, suggest that this interface is the primary mechanism for capsid assembly. Two-dimensional averages of the tail, including the neck and baseplate, reveal that ΦM12 has a relatively narrow neck that attaches the tail to the capsid, as well as a three-layer baseplate. When free from DNA, the icosahedral edges expand by about 5nm, while the vertices stay at the same position, forming a similarly smooth, but bowed, T=19l icosahedral capsid.


Asunto(s)
Bacteriófago T4/aislamiento & purificación , Bacteriófago T4/ultraestructura , Cápside/ultraestructura , Sinorhizobium meliloti/virología , Secuencia de Aminoácidos , Bacteriófago T4/genética , Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Microscopía por Crioelectrón , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...